Quiz 15 - Newton's Second Law - 11-04-03

Useful equations: $\Sigma F = ma$ $F_g = mg$

Two masses are connected by a rope and hang over a pulley. One mass is 5 kg and the other is 7 kg.

- a) Draw FBDs and label them completely.
- b) Solve for the acceleration without numbers.
- c) Substitute values and solve for the acceleration numerically.
- EC) Calculate the tension in the rope.

at
$$\bigcap$$
 to F_{τ} \bigcap F_{τ} \bigcap F_{τ} \bigcap $M_{\tau} = M_{\tau}$ \bigcap $M_{\tau} = 1$ \bigcap $M_{\tau} = 1$

$$EF = Ma$$
 $OF_T - M, g = M, a$
 $OM_2g - F_T = M_2a$
 $M_2g - M, g = M, a + M_2a$
 $(M_2 - M, g) = (M, + M_2)a$

b)
$$\alpha = (M_2 - M_1)g$$

 $M_1 + M_2$ $F_{+} = M_1 \alpha + M_2$
 $Q = (7kg - 5kg) 9.8 \frac{4}{5}z$
 $= 5kg + 7kg$ $= 5kg (1.6$
c) $\alpha = 1.63 \frac{M}{5}z$
 $= 57.2 N$

$$F_{+} = M, \alpha + M, g$$

= $M, (\alpha + g)$
= $5kg(1.63 \frac{4}{52} + 9.8 \frac{4}{52})$
= $F_{+} = 57.2 N$