
Kinematics Quiz 9 - 10-13-05 - Projectile Motion

An armadillo is launched upward at 65 m/s at a 35° angle. It lands in a canyon whose floor is 75 m lower. (Make a good, labeled diagram and show all important vectors.)

- a) How long does it take to hit?
- b) How far horizontally from the launch location does it land?
- c) What is its final speed?
- d) At what angle does it hit in relation to the ground?

$$V_{1}^{2} = 65\frac{\pi}{5}$$
 $\theta_{1}^{2} = 35^{\circ}$
 $\theta_{2}^{3} = -75m$
 $t = --5$
 $0X = --75m$
 $t = --5$
 $0X = --75m$
 $0X = --75m$

$$V_{x} = V_{i} \cos \theta$$
 $V_{ig} = V_{i} \sin \theta$
= 65\forall \cos 35\circ\text{ \text{Vig}} = 65\forall \text{ \text{S}} \text{ \text{Vig}} = \frac{37.3\frac{7}{3}}{5}

$$V_{x} = V_{i} \cos \theta$$
 $V_{ig} = V_{i} \sin \theta$
= 65 \(\frac{1}{2} \cdot \omega \sigma \frac{1}{2} \)
 $V_{x} = 53.2 \(\frac{1}{2} \) $V_{tg} = 87.3 \(\frac{1}{2} \)$$

$$V_{4y}^{2} = V_{1y}^{2} + 2aby$$

$$V_{4y} = \sqrt{37.3\%}^{2} + 2(-9.8\%)(-75m)$$

$$V_{4y} = \sqrt{4y - 1/y}$$

$$V_{4y} = -53.5\%$$

$$= -53.5\% - 37.$$

$$V_{49} = V_{i9} + at$$

$$t = \frac{V_{49} - V_{19}}{a}$$

$$= \frac{-53.5}{5} - \frac{37.3}{5}$$

$$-9.8 \frac{27}{5}$$

$$t = 9.275$$

$$\Delta X = V_x t$$

= 53.2 $\frac{\pi}{2}$ (9.27)

$$V_{4} = \sqrt{V_{x}^{2} + V_{4}y^{2}} \qquad \text{for } 0 = \frac{V_{4}y}{V_{x}}$$

$$= \sqrt{(53.2 \, \text{m}) + (37.3 \, \text{m})^{2}} \qquad = -53.5 \, \text{m}$$

$$= \sqrt{53.2 \, \text{m}}$$

$$= \sqrt{53.2 \, \text{m}}$$